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The present study involves computation of stochastic sensitivity of structures with
uncertain structural parameters subjected to random earthquake loading. The formulations
are provided in frequency domain. A strong earthquake-induced ground motion is
considered as a random process de"ned by respective power spectral density function. The
uncertain structural parameters are modelled as homogeneous Gaussian stochastic "eld and
discretized by the local averaging method. The discretized stochastic "eld is simulated by the
Cholesky decomposition of respective co-variance matrix. By expanding the dynamic
sti!ness matrix about its reference value, the advantage of Neumann Expansion technique is
explored within the framework of Monte Carlo simulation, to compute responses as well as
sensitivity of response quantities. This approach involves only a single decomposition of the
dynamic sti!ness matrix for the entire simulated structure and the facility that several
stochastic "elds can be tackled simultaneously are basic advantages of the Neumann
Expansion. The proposed algorithm is explained by an example problem.
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1. INTRODUCTION

The nature and trend of the responses of structures is widely dependent on design
parameters. Sensitivity is one of the ways to evaluate the performance of structures when
they are under the in#uence of parametric changes. The study of sensitivity of structural
systems is now acclaimed to be a very special area of interest by virtue of its utility in the
"eld of computational structural mechanics. There has been a great interest in developing
various methods for computing response sensitivity of the structure [1}5]. The sensitivity
gradient is a major prerequisite for carrying out structural optimization, reliability study,
parameter identi"cation, etc. However, the conventional sensitivity analysis of structures is
based on the assumptions of complete determinacy of structural parameters. But in reality,
the occurrence of uncertainty due to variation of design variables is inevitable. In stochastic
optimization and reliability-based design, the used performance function involves uncertain
structural parameters. As a result, the gradients of the performance function are also
uncertain in nature. Hence, the necessity to estimate the stochastic sensitivity gradient with
respect to random design parameters arises.
0022-460X/02/030543#14 $35.00/0 ( 2002 Academic Press
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The recent development of the stochastic "nite element methods (SFEM) [6}8] provides
a rational framework for the analysis of complex uncertain systems subjected to stochastic
excitation. The responses of a discrete system with uncertain parameters, when dynamic
loads are considered are commonly determined by using perturbation methods [9, 10] or
direct simulation technique [11, 12]. Perturbation and simulation-based SFEM have been
applied to study the seismic response variability of soil sites [13, 14]. There are approaches
[4, 15, 19] to exploit perturbation technique for sensitivity analyses of uncertain structures.
But the method was found to be not so e!ective for large variability of design parameters.
Nakagiri and Hisada [16] and Hisada and Nakgiri [9] concluded that the second order
perturbation was too intractable to be of any practical interest in solving real physical
problems. The Neumann Expansion method has been rarely used in the "eld of structural
mechanics [7, 17]. As in perturbation, this method proved that implementation of higher
order terms in the expansion is quite laborious. Interestingly, the Neumann Expansion is
found to work e$ciently when coupled with Monte Carlo simulation [17, 18, 20, 21].

In this study, it has been attempted to extend the Neumann Expansion method within the
framework of Monte Carlo simulation for sensitivity analysis of stochastic dynamic
systems. Here, seismically induced ground acceleration is treated as a stationary random
process de"ned by Kanai}Tajimi model. A "nite element formulation is used to discretize
the structure and its dynamic response is formulated in the frequency domain. The spatial
uncertainties of structural parameters are modelled as homogeneous Gaussian stochastic
"eld and discretized by local averaging technique [22, 23]. By expanding the uncertain
dynamic sti!ness matrix about its reference value, the Neumann Expansion method is
introduced within the framework of Monte Carlo simulation for computing response and
its sensitivity. A representative example of a concrete wall with uncertain Young's modulus
and mass density subjected to random earthquake loading is considered for illustration.

2. DETERMINISTIC SENSITIVITY

2.1. SENSITIVITY OF FREQUENCY RESPONSE FUNCTION

The dynamic equilibrium equation for a multi-degree-of-freedom system subjected to
ground excitation can be written as

[M]MuK N#[C]MuR N#[K]MuN"![M]M1NMugN, (1)

where [M], [C] and [K] are the global mass, damping and sti!ness matrix, respectively, MuN
is the total displacement of the system and MugN is the displacement resulting directly from
ground motion. To solve equation (1), the displacement of the "nite element model
subjected to unit amplitude ground motion uK g"e*ut, can be assumed as MuN"MHue*utN
where Hu is the complex frequency response function. Thus the velocity and acceleration
response can be obtained by taking the time derivative and substituting it into equation (1):
the equation of motion transforms to

([K]!u2[M]#iu[C])MHuN"![M]MlN,

i.e., [D(h)]MHu (h)N"MF(h)N, (2)

where [D(h)] is the dynamic sti!ness matrix and MF(h)N is the forcing vector. All these
matrices and vectors are the functions of either any design variable &&h'', or in combination.
In the present work, Young's modulus and mass density are considered as design variables.
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Thus equation (2) is explicitly re-written as

[D (MEN, MmN)]MHu(MEN, MmN)N"MF(MmN)N. (3)

Now if the sensitivity computation is performed with respect to modulus of elasticity as the
only design variable, di!erentiation of equation (3) with respect to &&E'' and reorientation
results in

L
LMEN

MHu(MEN, MmN)N"[D(MEN, MmN)]~1 C
L

LMEN
MF(MmN)N!MHu(MEN, MmN)N

]
L

LMEN
[D(MEN, MmN)]D . (4)

For simplicity, equation (4) can be presented as

MyN"![D (MEN, MmN)]~1 [MHu (MEN, MmN)N[D@]]

or, MyN"[D(MEN, MmN)]~1MF*N, (5)

where sensitivity of frequency response function can be de"ned as

MyN"
L

LMEN
MHu (MEN, MmN)N and [D]@"

L
LMEN

[D(MEN, MmN)],

thus MF*N"![MHu (MEN, MmN)N[D@]].

2.2. SENSITIVITY OF SPECTRAL DENSITY FUNCTION AND MEAN SQUARE DISPLACEMENT

For a linear system with known transfer function of response, the spectral density
function MSuN for any response variable MuN can be readily obtained as

MSuN"MHu(MEN, MmN)NMHu(MEN, MmN)N*TS
f
. (6)

Here, MHu(MEN, MmN)N*T is the complex conjugate of MHu (MEN, MmN)N and S
f

is the power
spectral density of the forcing function. The sensitivity of spectral density function can be
easily obtained by di!erentiating equation (6) with respect to &&E'' as

L
LMEN

MSuN"CMHu (MEN, MmN)N*T
L

LMEN
MHu(MEN, MmN)N#MHu(MEN, MmN)N

L
LMEN

]MHu (MEN, MmN)N*TDS
f

or, MS@uN"xMHu(MEN, MmN)N*TMyN#MHu (MEN, MmN)NMyN*TyS
f

(7)

Here, MyN*T stands for the complex conjugate of MyN.
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Now the sensitivity of mean square displacement M;N":=
0

MSuNdu can be computed as

M;@N"
L

LMEN
M;N"

L
LMEN P

=

0

MSuN du"P
=

0

MS@uNdu. (8)

The approximate integration will have to be performed using Simpson's rule upto the
cut-o! frequency.

3. STOCHASTIC SENSITIVITY

It is evident from the above section that for deterministic analysis, design variables E
k
and

m
k
(k"1, 2,2,N) are deterministic quantities for all discretized N numbers of element of

the structure. In stochastic analysis, E
k
and m

k
will be random from element to element. It is

well-versed in SFEM analysis that if the design parameter E and/or m becomes uncertain,
[DMMEN, MmNN] as well as MHuMMEN, MmNNN will be random in nature, causing MF*N to be
random. As a result, response sensitivity vector MyN will no longer remain deterministic.
Thus for kth element, equation (5) changes to

My
k
N"[D(MEN, MmN)]~1MF*

k
N. (9)

Here

MF*
k
N"![MHu(MEN, MmN)N[D@

k
]]"!MHu (MEN, MmN)N

L
LE

k

[D(MEN, MmN)]. (10)

4. DISCRETIZATION AND SIMULATION OF STOCHASTIC FIELD

The purpose of the present section is to describe the procedure of stochastic discretization
and generating sample function of the discretized Gaussian stochastic "eld necessary for
subsequent simulation. Di!erent researchers proposed several methods of discretization
using continuous and discontinuous representation of stochastic "eld. Continuous
representation involving Karhunen}Loeve expansion [7, 24] or general orthogonal series
expansion [25] demands solution of the integral eigenvalue problem, which may not have
a closed-form solution for realistic covariance function. But in discontinuous
representation, the stochastic "nite element models based on local averaging technique is
found to converge more rapidly than the mid-point method [22]. Moreover, detailed
knowledge about the correlation function of the random "eld is not essential. If it is
available, the use of direct variance reduction function can be obtained. Hence, local
averaging [7, 22] is used where the "eld variable over an element is approximated by spatial
average.

A homogeneous random scalar "eld a (x, y) de"ned over the domain X is taken. This &&a''
may be any design variable. It is characterized by its mean a6 (x, y), variance p2 and variance
function o (r

x
, r

y
) where r

x
"x!xN and r

y
"y!yN . The local averages of the "eld over

a rectangle A
i

centered at (x
i
, y

i
) having sides ¸

xi
and ¸

yi
parallel to x- and y-axis,

respectively, is de"ned as

a (x
i
, y

i
)"

1

¸
xi
¸
yi
P

xi`Lxi @2

xi~Lxi @2
P

yi`Lyi @2

yi~Lyi @2

a(x, y) dxdy. (11)
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Assuming the correlation of the "eld to be quadrant symmetric, the mean vector, variance
and covariance of the local averages can be written as [22]

E (a)"aN , (12)

Var(a)"pc (¸
x
, ¸

y
), (13)

Cov(a
i
, a

j
)"p

1

4A
i
A

j

3
+

k, l/0

(!1)k`1(¸
xk
¸

yl
)2c (¸

xk
, ¸

yl
)p, (14)

where p"diag[p
1
, p

2
,2,p

N
] and

c(¸
xk

, ¸
yl
)"

4

¸
xk
¸
yl
P

Lxk

0
P

Lyl

0
A1!

r
x

¸
xk
B A1!

r
y

¸
yl
B o (r

x
, r

y
) dxdy. (15)

Here ¸
xk

and ¸
yl

are the distances characterizing the relative positions of any two
discretized rectangles A

i
and A

j
as shown in Figure 1, and c(¸

xk
, ¸

yl
) is the normalized

variance function of the local averages a(x, y) over the rectangle with sides ¸
xk

and ¸
yl
. If

a(x, y) is separable, i.e., o (r
x
, r

y
)"o (r

x
)o (r

y
), one-dimensional expression for variance

reduction function can be easily used for two-dimensional purpose and becomes simply the
product of two one-dimensional factors, c(¸

xk
, ¸

yl
)"c(¸

xk
)c (¸

yl
).

Various available forms of analytic expressions, i.e., triangular, exponential, etc.,
characterized by a correlation parameter has been reported [24]. However, the suitability of
any model can be justi"ed by "tting actual experimental data. As no such data is available
to ascertain the relative merits of alternative models, Gaussian models with zero mean and
unit standard deviation having exponential correlation function have been selected for the
purpose of illustrating the analytical procedure. Here, the one-dimensional variance
function corresponding to o (r)"exp[!(r/b)2] can be readily obtained as

c(r)"A
b

rB
2

C
r

b
Jn/ A

b

rB#e~(r@b)2!1D, (16)
Figure 1. De"nition of distances characterizing relative position of rectangles A
i
and A

j
.
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where / ( ) ) is the error function. Its value increases from zero to one as the argument of the
function increases from zero to in"nity and &&b'' is the correlation parameter. For the present
2-D problem, variance function of the following form is taken:

o(r
x
, r

y
)"expC!GA

r
x

b
x
B
2
#A

r
y

b
y
B
2

HD, (17)

where b
x

and b
y

are the correlation parameters parallel to x- and y-axis respectively.
If there are &&N'' "nite elements in the structure, auto-correlated random design vector

MaN"Ma
1
, a

2
,2, a

N
NT of the random "eld a(x, y) can be obtained as

MaN"[¸]MZN (18)

in which MZN"MZ
1
, Z

2
,2,Z

N
NT is a vector comprising &&N'' independent Gaussian

random variates and [¸] is the lower triangular matrix derived through Cholesky
decomposition of Cov(a

i
, a

j
). It can be shown that the generated random variables satisfy

the original covariance property [17].
For the present study, Gaussian model has been selected for stochastic representation of

modulus of elasticity, though non-Gaussian "eld models are also existent. The Gaussian
models have limitations where design parameters experience large variations. Again the
assumption of Gaussian distribution implies the possibility of generating unrealistic
negative values of elastic properties. As truncated Gaussian distribution has been used for
the generation of random sample functions of the uncertain parameter, these di$culties can
be circumvented [17].

5. NEUMANN EXPANSION SOLUTION FOR RANDOM FREQUENCY RESPONSE

The direct Monte Carlo simulation is a technique to solve MHuMEN, MmNN directly for each
simulated sample structure, by substituting elements of simulated random MEN and MmN at
respective locations in [D(MEN, MmN)]. Then by solving the associated deterministic problem,
a population corresponding to desired response quantities can be obtained. It is worth
mentioning that in the direct Monte Carlo simulation random sti!ness matrix needs
decomposition for each simulation. The Neumann Expansion technique can be utilized to
avoid the repeated decomposition of random sti!ness matrix. For kth "nite element, the
design variable &&E

k
'' and &&m

k
'' can be decomposed into its mean and #uctuating component

as

E
k
"E

k0
(1#DE

k
), where DE

k
"E

k0
aE
k

m
k
"m

k0
(1#Dm

k
), where Dm

k
"m

k0
am
k
, where k"1, 2, 3,2, N. (19)

The random deviatoric part &&aE
k
'' or &&am

k
'' is obtained through digital simulation as described

in equation (18). Following this, the random global dynamic sti!ness matrix is separated
into mean and deviatoric parts.

[DMMEN, MmNN]"[DMME
0
N, Mm

0
NN]#[DMMDEN, MDmNN]. (20)

Now applying the Neumann Expansion for the inversion of random sti!ness matrix
[DMMEN, MmNN] and equation (20), the response vector which can be obtained from equation
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(3) yields as

MHuMMEN, MmNNN"[DMMEN, MmNN]~1MFMmNN"A
=
+
n/0

[!P]nB [DMME
0
N, Mm

0
NN]~1MFMmNN

"([I]![P]#[P]2![P]3#2)MHu0
N

"MHu0
N!MHu1

N#MHu2
N!MHu3

N#2, (21)

where, [P]"[DMME
0
N, Mm

0
NN]~1[DMMDEN, MDmNN] and

MHu0
N"[DMME

0
N, Mm

0
NN]~1MFMmNN. (22)

The above series solution is equivalent to the solution to the following recursive equation:

[DMME
0
N, Mm

0
NN]MHrui

N"[DMMDEN, MDmNN]MHrui~t
N. (23)

Once the decomposition of the deterministic part of the dynamic sti!ness matrix i.e.,
[DMMEN, MmNN] is complete, MHu0

N can be computed for each simulated load vector and
equation (23) can be used iteratively to obtain the random frequency response function for
each simulated sample structure without further decomposition of the sti!ness matrix.

6. NEUMANN EXPANSION SOLUTION FOR RANDOM RESPONSE SENSITIVITY

The Neumann Expansion can now be easily extended for each kth element to compute
the random sensitivity of frequency response function My

k
N and equation (9) yields

My
k
N"A

=
+
n/0

[!P]nB [DMME
0
N, Mm

0
NN]~1MF*

k
N

"([I]![P]#[P]2![P]3#2)My
k0
N

"My
k0
N!My

k1
N#My

k2
N!My

k3
N#2, (24)

where

My
k0
N"[DMME

0
N, Mm

0
NN]~1MF*

k
N. (25)

The solution of the above series can also be obtained by solving the following recursive
equation.

[DMME
0
N, Mm

0
NN]Myr

ki
N"[DMMDEN, MDmNN]Myr

ki~1
N. (26)

The expansion series may be terminated after a few terms depending on the required
convergence and accuracy of the solution [17].

Once the ensemble of sensitivity of frequency response function is obtained, the statistical
algorithms can be utilized to extract various statistical moments of the di!erent sensitivity
quantities. Hence the expected values and covariance of sensitivity of frequency response
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function are obtained for &&N
s
'' number of simulation as

E[MyN]:MyN N"
1

N
s

Ns
+
i/1

MyN
i

and, Cov[MyN, MyN]"
1

N
s

Ns
+
j/1

Ns
+
i/1

[MyN!MyN N]T
i
[MyN!MyN N]

j
. (27)

Similarly, response statistics of spectral density function and mean square displacement are
also obtained.

7. NUMERICAL EXAMPLE

To illustrate the e$ciency of Neumann Expansion coupled with Monte Carlo simulation
for sensitivity analysis of uncertain dynamic systems, as presented in the earlier section, an
example of a concrete wall of 9)0 m]9)0 m with 0)2 m thickness "xed at the base as shown
in Figure 2 subjected to random earth earthquake loading is presented. Results are
furnished at mid-point location where largest output is expected and are compared with
those by direct simulation.

Mean values of modulus of elasticity (E) and mass density (m) are taken as
2)0]1010 N/m2 and 2400)0 kg/m3 respectively. The value of the Poisson ratio is considered
as 0)15. Deviatoric part of elasticity and mass density are modelled as Gaussian process and
Figure 2. Finite element model of the wall subjected to earthquake loading.
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generated as described in equation (18). In local averaging discretization, the correlation
parameters are assumed as twice the element length.

In this study, for simplicity and ease of analysis, the ground motion is considered to be
a stationary random process with constant frequency content truncated for a "nite
duration. The following power spectral density function as suggested by Kanai}Tajimi can
be used to characterize a strong earthquake ground motion

S
f
"

[S
0
[1#4m2g (u/ug)2]

[1!(u/ug)2]2#4m2g (u/ug)2
. (28)
Figure 4. Comparison of s.d. of psd of displacement sensitivity:**, neu. exp. ("rst term); ))))))), neu. exp. (second
term); - - - - -, neu. exp. (third term); d, direct simulation.

Figure 3. Fluctuation of s.d. of mean-square displacement sensitivity.
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In the above, &&u'' is the component frequency, S
0

is the scale factor, &&ug'' and &&m
k
'' are the

equivalent natural frequency and damping ratio of the ground, respectively, characterized
by a single-degree-of-freedom system. The di!erent parameters of Kanai}Tajimi model of
random earthquake loading are the following: scale factor S

0
"3)73]10~3m2/s3,

equivalent natural frequency ug"15)56 rad/s2 and equivalent damping ratio mg"0)65.
The sensitivity of responses are calculated at a frequency step of 0)25 and the cut-o!
frequency is taken as 17)0 rad/s.
Figure 6. Comparison of s.d. of psd of displacement sensitivity:**, neu. exp. ("rst term); ))))))), neu. exp. (second
term); - - - - -, neu. exp. (third term); *d*, direct simulation.

Figure 5. Comparison of s.d. of psd of displacement sensitivity:**, neu. exp. ("rst term); ))))))), neu. exp. (second
term); - - - - -, neu. exp. (third term); *d*, direct simulation.
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The size of the ensemble should be large enough to obtain statistically stable results. As it
is observed from Figure 3 that after 100 simulations the #uctuation of sensitivity of
standard deviation of mean-square displacement is negligibly small, the number of
simulations has been "xed at 100. Figures 4}6 represent the comparison of power spectral
density at di!erent coe$cient of variation (c.o.v). The plots infer that for a lower range of
c.o.v. two terms of Neumann Expansion are well convergent, whereas for higher c.o.v. more
number of terms need to be employed. However, the results obtained by the Neumann
Figure 8. Comparison of s.d. of mean-square displacement sensitivity versus coe$cient of variation: )))))r)))))),
neu. exp. (third term); *d*, direct simulation.

Figure 7. Comparison of mean-square displacement sensitivity versus coe$cient of variation: )))))r)))))), neu. exp.
(third term); *d*, direct simulation.
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Expansion show some shift around the natural frequency and this shift increases at higher
c.o.v. To show these shifts in a pronounced fashion, plots have been restricted within
a frequency range of 2)0}8)0 rad/s. The comparison of sensitivity of mean-square
displacement at di!erent c.o.v. are furnished in Figures 7 and 8. The dependence of
sensitivity of mean-square displacement on correlation parameter is shown in Figures 9 and
10. It is observed that as the correlation length increases, the e$ciency of Neumann
Expansion decreases. An increase in c.o.v. as well as correlation length causes the increase of
Figure 10. Comparison of s.d. of mean-square displacement sensitivity versus correlation length: )))))r)))))), neu.
exp. (third term); *d*, direct simulation.

Figure 9. Comparison of mean-square displacement sensitivity versus correlation length: )))))r)))))), neu. exp.
(third term); *d*, direct simulation.
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stochasticity of the system and more number of terms are to be employed for convergence of
results.

8. CONCLUSION

By decomposing dynamic sti!ness matrix, the existing "nite element program can be
easily used, only incorporating random variable simulation subroutine, without involving
further computational complexity. It is observed that for small c.o.v., two terms of
Neumann Expansion are well convergent. But only three terms in the Neumann Expansion
are not su$cient for good convergence at higher c.o.v. (more than 0)20). In that situation,
more number of terms will be necessary but the advantage of the Neumann Expansion will
be lost. It is evident that the Neumann Expansion is quite e!ective over direct simulation as
it involves only single decomposition of dynamic sti!ness matrix for the entire simulated
structure. However, the accuracy and e$ciency are largely dependent on the number of
degrees of freedom, degree of accuracy required, models of uncertain parameters, etc. It is
notable that more than one random parameter can be considered simultaneously for
a single-step solution result. This is an important #exibility in this approach, which is
di$cult to obtain in perturbation technique.
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